
Parametric Calculus – Derivatives and Integrals  

In the last lesson we learned some basic skills for working with parametric equations.  In this 

lesson we extend our knowledge of parametric equations and learn how to use calculus, i.e., 

differentiation and integration, with parametric equations. 

Differentiation: 

For a curve represented by a function in the form of 𝑦 = 𝑓(𝑥), the slope of the tangent line is 

given by the derivative 𝑦 with respect to 𝑥 as 

𝑑𝑦

𝑑𝑥
= 𝑓′(𝑥) 

For which we can use one of the many available rules to differentiate. 

When a curve is represented parametrically, a shown below, we may still be interested in 

computing the slope of the tangent line for the curve. 

𝑐(𝑡) = [𝑥(𝑡), 𝑦(𝑡)] 

One method, of course, is to eliminate the parameter and then compute the derivative directly.  

However, as we have learned, eliminating the variable is not always easy, or even possible.  

Therefore, we would like to find a way to compute 𝑑𝑦 𝑑𝑥⁄  using 𝑥(𝑡) and 𝑦(𝑡) directly.  We can 

derive a method using a simple “trick”.  We multiply the numerator and denominator by 1 𝑑𝑡⁄ . 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑥
∙ (

1
𝑑𝑡⁄

1
𝑑𝑡⁄

) 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦
𝑑𝑡

⁄

𝑑𝑥
𝑑𝑡⁄

 

𝑑𝑦

𝑑𝑥
=  

𝑦′(𝑡)

𝑥′(𝑡)
 

 

As an example, let’s find the derivative, 𝑑𝑦 𝑑𝑥⁄ , of the following parametric equation: 

𝑐(𝑡) = [2𝑡 − 4,  𝑡2 + 3 ] 

Let’s start by eliminating the parameter and computing the derivative directly. 

From 𝑥(𝑡), we find 𝑡 =
1

2
𝑥 + 2.  Therefore, 𝑦(𝑥) =  (

1

2
𝑥 + 2)

2

+ 3.  The derivative is then 

computed as 

𝑑𝑦

𝑑𝑥
= 2 (

1

2
𝑥 + 2)

1

2
 

=
1

2
𝑥 + 2 



Now let’s use our new formula and find 𝑑𝑦 𝑑𝑥⁄  using the original parametric equations. 

𝑑𝑦

𝑑𝑥
=  

𝑦′(𝑡)

𝑥′(𝑡)
 

=  
2𝑡

2
 

= 𝑡 

And since we have already shown that 𝑡 =
1

2
𝑥 + 2, the answers are identical! 

 

Slope of the Tangent Line for Parametric Equations 

If 𝑐(𝑡) = [𝑥(𝑡), 𝑦(𝑡)], where 𝑥(𝑡) and 𝑦(𝑡) are both differentiable and 𝑥′(𝑡) is continuous 
and not equal to zero, then  
 

𝑑𝑦

𝑑𝑥
=  

𝑦′(𝑡)

𝑥′(𝑡)
 

 

Integration (Area Under the Curve): 

As we know, the area under a curve, 𝑦(𝑥), when 𝑦(𝑥) ≥ 0 for [𝐴, 𝐵] is given as shown below. 

y

x
A Bdx  

𝐴 = ∫ 𝑦(𝑥)𝑑𝑥
𝑥=𝐵

𝑥=𝐴

 

 

However, if we are given the curve in parametric form we would like to integrate with respect 

to the parameter, e.g. 𝑡.  To do so we make the following substitutions. 

• 𝑑𝑥 = 𝑑𝑥 (
𝑑𝑡

𝑑𝑡
) =

𝑑𝑥

𝑑𝑡
𝑑𝑡 = 𝑥′(𝑡)𝑑𝑡 

• Use 𝑡(𝑥) to replace the limits of integration with  𝑡(𝐴) and 𝑡(𝐵) 

• Replace  𝑦(𝑥) with 𝑦(𝑡) 

Then we can write 

𝐴 = ∫ 𝑦(𝑡)𝑥′(𝑡)𝑑𝑡
𝑡(𝐵)

𝑡(𝐴)

 

 



Let’s verify this formula by computing the area under the curve represented by the parametric 

equation below for 0 ≤ 𝑥 ≤ 4. 

𝑐(𝑡) = [2𝑡, 𝑡2] 

Again, let’s start by eliminating the parameter and computing the area directly. 

From 𝑥(𝑡), we find 𝑡 =
1

2
𝑥.  Therefore, 𝑦(𝑥) =  (

1

2
𝑥)

2

=
1

4
𝑥2.  The area is then computed as 

 

𝐴 = ∫
1

4
𝑥2𝑑𝑥

4

0

 

=
1

12
𝑥3|

0

4

=
64

12
=

16

3
 

Now let’s use our new formula.   

Note: We can use the formula in this case since 𝑦(𝑥) ≥ 0 for [0,4].  For the limits we have 

𝑡(0) =
1

2
0 = 0 and 𝑡(4) =  

1

2
4 = 2. 

𝐴 = ∫ 𝑦(𝑡)𝑥′(𝑡)𝑑𝑡
𝑡(𝐵)

𝑡(𝐴)

 

= ∫ 𝑡2
𝑑

𝑑𝑡
(2𝑡)𝑑𝑡

2

0

 

= 2 ∫ 𝑡2𝑑𝑡
2

0

 

=
2

3
𝑡3|

0

2

=
16

3
 

 

Formally, we may write the following for the area under parametric curves. 

Area Under the Curve for Parametric Equations 

For a parametric curve, 𝑐(𝑡) = [𝑥(𝑡), 𝑦(𝑡)], that stays above the 𝑥-axis for 𝑡0 ≤ 𝑡 ≤ 𝑡1 and 
represents a function in the same interval, i.e., passes the vertical line test, the area under 
this curve is given as 

𝐴 = ∫ 𝑦(𝑡)𝑥′(𝑡)𝑑𝑡
𝑡1

𝑡0

 

 

Let’s practice using our differentiation and integration formulas with some examples.   

 

 



Example 1:  Find 𝑑𝑦 𝑑𝑥⁄  at the given point. 

1. 2. 3. 

[𝑡3, 𝑡2 − 1], 𝑡 = −4 [𝑠−1 − 3𝑠, 𝑠3], 𝑠 = −1 [𝑠𝑖𝑛3(𝜃) , 𝑐𝑜𝑠(𝜃)], 𝜃 =
𝜋

4
 

Solution: 

1. 2. 3. 

𝑑𝑦

𝑑𝑥
|

𝑡=−4
=

𝑦′(𝑡)

𝑥′(𝑡)
|

𝑡=−4

 

=
2𝑡

3𝑡2
|

𝑡=−4
 

=
2(−4)

3(−4)2
 

= −
1

6
 

𝑑𝑦

𝑑𝑥
|

𝑠=−1
=

𝑦′(𝑠)

𝑥′(𝑠)
|

𝑠=−1

 

=
3𝑠2

−
1
𝑠2 − 3

|

𝑠 =−1

 

=
3(−1)2

−
1

(−1)2 − 3

= −
3

4
 

 

𝑑𝑦

𝑑𝑥
|

𝜃=−1
=

𝑦′(𝜃)

𝑥′(𝜃)
|

𝜃=
𝜋
4

 

=
− 𝑠𝑖𝑛(𝜃)

3 𝑠𝑖𝑛2(𝜃) 𝑐𝑜𝑠(𝜃)
|

𝜃=
𝜋
4

 

=
− 𝑠𝑖𝑛 (

𝜋
4)

3 𝑠𝑖𝑛 (
𝜋
4) 𝑐𝑜𝑠 (

𝜋
4)

|

𝜃=
𝜋
4

 

=
−

√2
2

3
√2
2

√2
2

= −
√2

3
 

 

Example 2:  Given 𝑐(𝑡) = [3𝑡2 − 2𝑡, 𝑡3 − 6𝑡], find  

a. The equation of the tangent line at 𝑡 = 3  

b. Points where the tangent is horizontal 

Solution:  To find the equation of the tangent line we start by finding the slope at 𝑡 = 3. 

𝑑𝑦

𝑑𝑥
|

𝑡=3
=

𝑦′(𝑡)

𝑥′(𝑡)
|

𝑡=3

 

=
3𝑡2 − 6

6𝑡 − 2
|

𝑡=3

 

=
3(3)2 − 6

6(3) − 2
 

=
21

16
 

Next, we find the 𝑥-𝑦 coordinate at 𝑡 = 3. 

[𝑥3, 𝑦3] = [3(3)2 − 2 ∙ 3, (3)3 − 6 ∙ 3] = [21,9] 



Finally, we use the point slope formula to find the tangent line. 

𝑦 − 𝑦3 = 𝑚(𝑥 − 𝑥3) 

𝑦 − 9 =
21

16
(𝑥 − 21) 

𝑦 =
21

16
(𝑥 − 21) + 9 

To find when the tangent line is horizontal, we find when the derivative is equal to zero. 

3𝑡2 − 6

6𝑡 − 2
= 0 

3𝑡2 = 6 

𝑡 = ±√2 

The coordinates are then 

= [3(√2)
2

− 2√2, (√2)
3

− 6√2] 

= [6 − 2√2, −4√2] 

≅ [3.2, −5.7] 

= [3(−√2)
2

− 2(−√2), (−√2)
3

− 6(−√2)] 

= [6 + 2√2, 4√2] 

≅ [8.8, 5.7] 

 

The curve along with the tangent line and horizontal lines are shown below for illustration. 

 



Example 3:  Compute the area under the curve 𝑐(𝑡) = [𝑒𝑡, 𝑡] for 0 ≤ 𝑡 ≤ 1 

Solution:  Since the 𝑦 coordinate is positive in the interval under consideration we can find the 

area using the formula derived from above. 

𝐴 = ∫ 𝑦(𝑡)𝑥′(𝑡)𝑑𝑡
1

0

= ∫ 𝑡𝑒𝑡𝑑𝑡
1

0

 

 

To evaluate this integral we use integration by parts. 

𝑢 = 𝑡 𝑑𝑣 = 𝑒𝑡𝑑𝑡 
𝑑𝑢 = 𝑑𝑡 𝑣 = 𝑒𝑡 

 

∫ 𝑡𝑒𝑡𝑑𝑡
1

0

= 𝑡𝑒𝑡 − ∫ 𝑒𝑡𝑑𝑡
1

0

 

= 𝑒𝑡(𝑡 − 1)|0
1 

𝐴 = 1 

 

Example 4:  Compute the area under the curve 𝑐(𝑡) = [𝑠𝑖𝑛(𝑡) , 𝑐𝑜𝑠2(𝑡)] for 0 ≤ 𝑡 ≤ 𝜋 2⁄  

Solution:  We can again directly us the formula since 𝑐𝑜𝑠2(𝑡) ≥ 0. 

𝐴 = ∫ 𝑦(𝑡)𝑥′(𝑡)𝑑𝑡
𝜋 2⁄

0

 

= ∫ 𝑐𝑜𝑠2(𝑡) 𝑐𝑜𝑠(𝑡) 𝑑𝑡
𝜋 2⁄

0

 

= ∫ (1 − 𝑠𝑖𝑛2(𝑡)) 𝑐𝑜𝑠(𝑡) 𝑑𝑡
𝜋 2⁄

0

 

This integral can be solved using the following substitution. 

𝑢 = 𝑠𝑖𝑛(𝑡) 𝑑𝑢 = 𝑐𝑜𝑠(𝑡) 𝑑𝑡 
 

= ∫ (1 − 𝑢2)𝑑𝑢
1

0

 

= 𝑢 −
1

3
𝑢3|

0

1

=
2

3
 

 

 



Example 5:  Find the area under one arch of a cycloid generated by a circle of radius 𝑅. 

Solution:  We derived the parametric representation of a cycloid in the previous lesson as 

𝑐(𝜃) = [𝑅𝜃 − 𝑅 𝑠𝑖𝑛(𝜃) , 𝑅 − 𝑅 𝑐𝑜𝑠(𝜃)] 

When the wheel rotates by 2𝜋 radians it traces out one arch.  Therefore, we have 

𝐴 = ∫ (𝑅 − 𝑅 𝑐𝑜𝑠(𝜃))(𝑅𝜃 − 𝑅 𝑠𝑖𝑛(𝜃))′𝑑𝜃
2𝜋

0

 

= ∫ (𝑅 − 𝑅 𝑐𝑜𝑠(𝜃))(𝑅 − 𝑅 𝑐𝑜𝑠(𝜃))𝑑𝜃
2𝜋

0

 

= 𝑅2 ∫ (1 − 𝑐𝑜𝑠(𝜃))2𝑑𝜃
2𝜋

0

 

= 𝑅2 ((∫ 1𝑑𝜃
2𝜋

0

) − (∫ 2 𝑐𝑜𝑠(𝜃) 𝑑𝜃
2𝜋

0

) + (∫ 𝑐𝑜𝑠2(𝜃) 𝑑𝜃
2𝜋

0

)) 

= 𝑅2 ((2𝜋) − (0) + (
1

2
∫ (1 + 𝑐𝑜𝑠(𝜃))𝑑𝜃

2𝜋

0

)) 

= 𝑅2 (2𝜋 +
1

2
(2𝜋 + 0)) = 3𝜋𝑅2 

 

Final Summary for Parametric Calculus – Derivates and Integrals 

Slope of the Tangent Line for Parametric Equations 

If 𝑐(𝑡) = [𝑥(𝑡), 𝑦(𝑡)], where 𝑥(𝑡) and 𝑦(𝑡) are both differentiable and 𝑥′(𝑡) is continuous 
and not equal to zero, then 
 

𝑑𝑦

𝑑𝑥
=  

𝑦′(𝑡)

𝑥′(𝑡)
 

Area Under the Curve for Parametric Equations 

For a parametric curve, 𝑐(𝑡) = [𝑥(𝑡), 𝑦(𝑡)], that stays above the 𝑥-axis for 𝑡0 ≤ 𝑡 ≤ 𝑡1 and 
represents a function in the same interval, i.e. passes the vertical line test, the area under 
this curve is given as 
 

𝐴 = ∫ 𝑦(𝑡)𝑥′(𝑡)𝑑𝑡
𝑡1

𝑡0
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