
Geometric Optics – Mirrors 

Light is a form of electromagnetic radiation, which according to Maxwell’s equations, can be 

described as a wave.  Modeling light as a wave enables us to better understand certain aspects 

of light, such as interference and diffraction.  However, other aspects of light, such as 

reflection, refraction, and the formation of images from mirrors and lenses, can be much more 

easily understood using a so-called ray model of light.  A ray is an idealization that is meant to 

represents an extremely narrow beam of light.  The ray model of light assumes light travels in 

straight line paths called rays.  As you will see, this model aligns very well with our intuitive 

understanding of light.  According to the ray model, an object that does not emit light is ‘seen’ 

because of light rays emitted from a source, e.g. the sun.  These light rays strike each and every 

point on the object before reaching our eyes.  We then subconsciously process these rays to 

recreate an image of the object.  

 

 

As shown in the figure, although light rays leave each point in many directions, we can assume 

a single ray reaches our eyes from each point on the object.  The study of sight and the 

behavior of light using a ray model is referred to as geometric optics.  We begin our study of 

geometric optics looking at images formed by mirrors.  A mirror is a flat surface that reflects 

most of the light rays that are incident on that surface.  Any object that reflects a sizable 

portion of incident light rays can be considered a mirror, e.g. water.  However, more commonly 

we refer to a mirror as a specifically manufactured glass that is coated with a thin layer of metal 

such that it reflects nearly 100% of the incident light rays.  Before diving into studying exactly 

how images are formed using mirrors, we need to understand how light rays are reflected from 

surfaces. 

   

 

 

  

 



Reflection: 

When a narrow beam of light strikes a highly reflective flat surface the beam will reflect from 

that surface at an angle, called the angle of reflection, that is directly related to the angle for 

which the beam struck the surface, called the incident angle.  Both angles are measured with 

respect to the normal to the surface.  The angles are related through the so called Law of 

Reflection. 

Law of Reflection 

When a narrow beam of light, e.g. a light ray, strikes a flat and reflective surface the following 
applies. 

The angle of incidence, 𝜽𝒊, equals the angle of reflection, 𝜽𝒓. 
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Plane Mirrors: 

For our purposes we define a mirror as a perfectly smooth surface that reflects all incident rays 

according to the law of reflection.  Furthermore, a plane mirror is one that is perfectly flat.  As 

mentioned, an object that does not emit light is ‘seen’ because of light rays emitted from a 

source, e.g. the sun, striking each and every point on the object before reaching our eyes.  In 

the case where we are viewing the object through a mirror, the rays are first reflected from the 

surface of the mirror before reaching our eyes.  Our eyes, along with our brains, then attempt 

to recreate an image of the object.  To see how this process works let’s imagine a point object, 

𝑂, placed a distance, 𝑑𝑜, from a plane mirror, as shown below. 
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The figure shows three specific light rays that are bounced from the object and incident on the 

mirror.  The first ray is incident at 90°and therefore reflects straight back to the object.  The 

second ray reaches the mirror at a point above the first ray and is incident at an angle, 𝜃𝑖.  This 

ray is shown to reflect from the mirror with a reflection angle, 𝜃𝑟 = 𝜃𝑖.  The reflected ray enters 

the eye of an observer.  The observer, assuming that rays travel in straight lines, traces the ray 

back along the dotted line as shown.  All three rays are shown traced back in a similar manner.  

The point at which these rays converge is where the observer will form an image of the object 

as shown.  Using some simple geometry, we can prove the triangles are similar so that the 

lengths are the same.  Using the convention that distances on the side of the mirror where the 

object is placed are positive and are negative on the opposite, we have 

𝑑𝑖 = −𝑑𝑜 

Where 𝑑𝑖 is referred to as the image distance.   

Finally, since the rays do not actually pass through the image, we refer to this as a virtual 

image.  When the rays do pass through the image, which we will see is sometimes the case for 

curved mirrors, we call these real images.  Real images would appear on paper or film if placed 

at the image location, whereas virtual images would not. 

 

Extended Objects: 

An extended object is represented by an upright arrow as shown in the figure below. 
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Each small portion of the object that faces the mirror acts like a point source.  Tracing each of 

these points, as we did with the single point source above, we can perceive the entire image.  

Doing so for the top and bottom portion only we see that the image formed is the same height 

as the object, ℎ𝑖 = ℎ𝑜.   

 

 



Example 1:  What mirror length is required for a person to see their entire body?   

Solution:  The figure below shows a person of height, ℎ𝑜, with eyes that are a distance ℎ𝑒 from 

the top of their head.     
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The first ray we draw leaves the foot of the person, reflects off the mirror and impinges on the 

eye of the observer.  Since the angle of incidence is equal to the angle of reflection the triangle 

AEC is congruent to triangle FEC.  Therefore, the ray reaches the mirror at a height of 

ℎ𝑜 − ℎ𝑒 2⁄ . Next, we draw a ray that leaves the top of the persons head, reflects from the 

mirror, and impinges on the eye of the observer.  Using the same argument with congruent 

triangles we see the ray hits the mirror ℎ𝑒 2⁄  below the persons head.  With this we see that 

the length of mirror required is ℎ𝑜 − ℎ𝑒 2⁄ .  Neglecting the small distance, ℎ𝑒, we can say in 

general that a full length mirror need only be half the size of the person for them to see their 

entire image.  Note that this result doesn’t depend on the distance the person is from the 

mirror. 

 

Example 2:  In a mirror maze each wall is covered with mirrors.  The result is a confusing 

montage of reflections that make it fun, (and sometimes frustrating), to walk through.  In a 

mirror maze the image formed from one mirror is used as the object of the next, and so on.  To 

illustrate this, take the case of two mirrors facing each other at 𝐿 = 2.0 𝑚 apart.  You stand at 

𝐷 = 1.5 𝑚 away from one of these mirrors and look into it.  How far away do the first three 

images of yourself appear in the mirror in front of you?  Which way are these images oriented? 

Solution:  The figure below illustrates the scenario.   
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The first set of images are directly created from the person, labeled 𝑂.  

Image 𝐼𝐴1 created from 𝑂: 

• The distance from 𝑂 to mirror 𝐴 is 𝐷.  Therefore, the image is located 𝐷 + 𝐷 meters in 
front of 𝑂 and is oriented to the right.      

Image 𝐼𝐵1 created from 𝑂: 

• The distance from 𝑂 to mirror 𝐵 is 𝑑. Therefore, the image is located 𝑑 + 𝑑 meters 
behind 𝑂 and is oriented to the right. 

    

The second set of images are created from the first set of images.    

Image 𝐼𝐴2 created from image 𝐼𝐵1: 

• The distance from 𝐼𝐵1 to mirror 𝐴 is 𝐿 + 𝑑.  Therefore, 𝐼𝐴2 is located (𝐿 + 𝑑) + 𝐷 
meters in front of 𝑂 and is oriented to the left.      

Image 𝐼𝐵2 created from image 𝐼𝐴1: 

• The distance from 𝐼𝐴1 to mirror 𝐵 is 𝐿 + 𝐷.  Therefore, 𝐼𝐵2 is located (𝐿 + 𝐷) + 𝑑 
meters in behind 𝑂 oriented to the left.      

 

The third image seen in mirror 𝐴 is created from the second image in mirror 𝐵.    

Image 𝐼𝐴3 created from image 𝐼𝐵2: 

• The distance from 𝐼𝐵2 to mirror 𝐴 is 2𝐿 + 𝐷.  Therefore, 𝐼𝐴3 is located (2𝐿 + 𝐷) + 𝐷 
meters in front of 𝑂 and is oriented to the right.      

 

Using the values from 𝐷, 𝑑, and 𝐿 from above the first three images in mirror 𝐴 are at the 

following distances and orientation from the person, 𝑂. 

Image in Mirror 𝑨 Distance from 𝑶 Orientation 

𝐼𝐴1 𝐷 + 𝐷 =  2𝐷 =  2 ∙ 1.5 = 𝟑 𝒎 Right 

𝐼𝐴2 (𝐿 + 𝑑) + 𝐷 =   (2 + 0.5) + 1.5 = 𝟒 𝒎 Left 

𝐼𝐴3 (2𝐿 + 𝐷) + 𝐷 =  2𝐿 + 2𝐷 =  2 ∙ 2 + 2 ∙ 1.5 = 𝟕 𝒎 Right 

 

 

 

 

 

 



Curved Mirrors: 

The most common curved mirrors are spherical, which means they from a section of a sphere.  

If the reflection takes place on surface considered the inside of the sphere the mirror is called 

concave.  If the reflection takes place on the outside surface the mirror is called convex.   

Concave Mirror

O

Convex Mirror

e.g. shaving/makeup mirrors

O

e.g. car rearview mirrors  

Concave Mirrors: 

The rays that arrive at a concave mirror from an object that is very far away are very nearly 

parallel.  Using a concave mirror and the law of reflection for each incident ray we can argue 

that each ray will reflect in nearly the same spot on what we refer to as the principal axis as 

shown in the figure below.   
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In order to create a sharp image all parallel rays should come to a single point.  If the mirror is 

small compared to its radius of curvature it can be approximate that all parallel rays fall on a 

single point, called the focus as shown in the figure below.   
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𝑟 is the radius of the sphere if complete, i.e. curvature. 
𝑓 is the focal length and is equal to 𝑟 2⁄ . 
𝐹 is the focal point.  It is the image point for an object that is infinitely far away along the 
principal axis.  
 



The figure above tells us that for an object that is infinitely far away the image will appear, 

(actually it will have no height so not seen), at the focal point.  To illustrate with objects that are 

not infinitely far away we place an object between 𝐶 and 𝐹.  To find the image location we can 

draw several rays from the object and use the law of reflection to see where they intersect.  

However, to simplify the process, we can use the following three rays: 

• Ray 1:  Is drawn parallel to the axis and therefore passes through 𝐹 upon reflection. 

• Ray 2:  Is drawn passing through 𝐹 and therefore is parallel to the axis upon reflection. 

• Ray 3:  Is drawn passing through 𝐶 and therefore reflects back along the same path. 
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Note: Only two of these rays are actually required but the third can serve as a check. 

The image formed is inverted, larger, and a real image.  Objects can be placed at different 

locations along the principle axis and we can draw the rays to roughly determine the size and 

location of the resulting image.  Unfortunately, high accuracy is difficult to achieve because of 

the small angles required.  Fortunately, geometry can be used to derive equations that give the 

distance, orientation, and size, of the image.  They are provided below without proof.  

Mirror Equations 
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𝑚: represents the lateral magnification 
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Conventions: 

• Object height, ℎ𝑜, and image height, ℎ𝑖, are positive if upright and negative if inverted. 

• Object distance, 𝑑𝑜, the image distance, 𝑑𝑖, and the focal length, 𝑓, are positive if they 
are located on the side of where the light rays originate and negative otherwise. 

• The magnification, 𝑚, is positive for an upright image and negative for an inverted image. 

• The image is considered a real image if light rays pass through it and a virtual image is the 
light rays do not pass through it. 



Example 3:  A 1.0 cm high object is placed 10 cm in front of a concave mirror whose radius of 

curvature is 30 cm.   

a.) Determine the position and magnification of the image analytically.   

b.) Draw a ray diagram to locate the approximate location and size of the image. 

 

Solution:  For part a. we directly use the mirror equations.  The focal length is given by 

𝑓 =  
𝑟

2
=

30

2
= 15 𝑐𝑚 

The image distance can then be found as follows: 
1

𝑑𝑖
=

1

𝑓
−

1

𝑑𝑜
 

𝑑𝑖 = (
1

15
−

1

10
)

−1

=  −30 𝑐𝑚 

Which indicates the image is on the non-reflecting side of the mirror and is virtual. 

Next, the height of the image can be found using the magnification equation. 

𝑚 =
ℎ𝑖

ℎ0
= −

𝑑𝑖

𝑑0
 

ℎ𝑖 = −
𝑑𝑖

𝑑0
ℎ0 

ℎ𝑖 = −
−30

10
1 =  3 𝑐𝑚 

Which indicates that the image is upright. 

For part b. we sketch a ray diagram to illustrate this scenario. 
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Note, since the rays do not pass through the object the image is virtual.  Furthermore, as you 

can see the diagram is not 100% accurate but does give the relative location and magnification 

of the image.   

 



Convex Mirrors: 

The ray tracing technique, as well as the mirror equations that were used for concave mirrors, 

can also be applied to convex mirrors.  The main difference for convex mirrors is the focal point 

is behind the reflecting surface.  Therefore, the focal length must be considered negative.  
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Example 4:  A convex rearview mirror has a radius of convergence of 16 m.  Determine the 

location and magnification of an object placed 10 m from the mirror. 

a.) Determine the position and magnification of the image analytically.   

b.) Draw a ray diagram to locate the approximate location and size of the image. 

 

Solution:  For part a. we directly use the mirror equations, taking care to treat the focal length 

as negative. 

𝑓 =  
𝑟

2
=

−16

2
= −8 𝑚 

The image distance can then be found as follows: 

1

𝑑𝑖
=

1

𝑓
−

1

𝑑𝑜
 

𝑑𝑖 = (
1
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1

10
)

−1
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40

9
 

 𝑑𝑖 ≅ −4.4 𝑚 

Which indicates the image is on the non-reflecting side of the mirror and is virtual. 

Next, the magnification is given as follows: 

𝑚 = −
(−

40
9 )

10
 

𝑚 =
4

9
≅ 0.44 

Which indicates that the image is upright and reduced in size. 



For part b. we sketch a ray diagram to illustrate this scenario. 
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Note, since the rays do not pass through the object the image is virtual.     

 

We see that as the location of the object varies the image location and size changes.  

Furthermore, as the image location switches mirror sides, assuming it does, it changes between 

a real and virtual image.  The pattern can be investigated by drawing ray diagrams for different 

locations of the object or by rearranging the mirror equations to give new equations for 𝑑𝑖 and 

𝑚 as functions of 𝑑𝑜, which can then be plotted for a given 𝑓.  As an example, for the concave 

mirror we can write the following relationships. 

 

𝑑𝑖(𝑑𝑜) =
𝑓𝑑𝑜

𝑑𝑜 − 𝑓
 𝑚(𝑑𝑜) = −

𝑓

𝑑𝑜 − 𝑓
 

 

You can investigate these equations to verify they match with the figures we show below. 

 

 

 

 

 

 

 

 

 



The first figure shows how the image varies as a function of the object distance for a concave 

mirror. 
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The illustration shows the object and image location moving over three regions which are 

explained below. 

• 𝑂1, 𝐼1, ( 0 < 𝑑𝑜 < 𝑓):  

o As the object moves away from the mirror towards the focal point, a virtual image is 

formed that moves further away from the mirror and gets larger. 

• (𝑑𝑜 = 𝑓):  

o As the object continues to move away from the mirror and approaches the focal point 

the virtual image approaches a distance of negative infinity with height approaching 

infinity.  Note if the object were approaching the focal point from the other side an 

inverted real image would be approaching a distance of positive infinity with a height 

approaching infinity.   

• 𝑂2, 𝐼2, ( 𝑓 < 𝑑𝑜 ≤ 𝑐):  

o As the object moves from the focal point to the center point an inverted real image 

begins to move in from a distance of positive infinity and begins to decrease in size.  

When 𝑑𝑜 = 𝑐 the inverted real image has a distance, 𝑑𝑖 = 𝑑𝑜, and a height of ℎ𝑖 = −ℎ𝑜. 

• 𝑂3, 𝐼3, ( 𝑐 < 𝑑𝑜 < ∞):  

o As the object moves from the center point to a distance of positive infinity an inverted 

real image moves closer to the focal point and its size continues to diminish.  Note as 

the object approaches positive infinity the image approaches zero in height at the focal 

point. 

 



The next figure shows how the image varies as a function of the object distance for a convex 

mirror. 
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The illustration shows the object and image location moving over a single region which is 

explained below. 

• 𝑂1, 𝐼1, ( 0 < 𝑑𝑜 < ∞):  

o As the object moves away from the mirror towards positive infinity, a virtual image is 

formed that moves further away from the mirror and gets smaller.  Note that the image 

starts with the same height as the object and approaches zero in height at the focal 

point when the object is at positive infinity. 

 

 

 

Refraction: 

In the above analysis we have assumed that all light rays incident on a surface are reflected 

from that surface, e.g. the surface of the mirror.  In reality when light is incident on an object 

some of the light is reflected while some may pass through the object.  Focusing instead on the 

portion of the light that is not reflected we can say that when a light ray passes from one 

medium, e.g. air, into another medium, e.g. water, the ray is bent.  This bending of the light ray 

is called refraction.  The amount of bending is dependent on what we refer to as the index of 

refraction of the medium.  The index of refraction, 𝑛, in turn is related to the relative speed of 

light in the given medium.  

𝑛 =
𝑐

𝑣
 

Where 𝑐 is the speed of light in a vacuum, 𝑐 ≅ 3𝐸8 𝑚 𝑠⁄ . 

Since the speed, 𝑣, can never exceed 𝑐, the index of refraction will be a number greater than or 

equal to one, 𝑛 ≥ 1. 



The relationship between the incident angle and the refracted angle is given by Snell’s Law. 

Snell’s Law of Refraction 

 

𝑛1 sin(𝜃1) = 𝑛2 sin(𝜃2) 

 

Where 𝜃1 is the angle if incidence and 𝜃2 is the angle of refraction; 𝑛1 and 𝑛2 are the 

respective indices of refraction of the materials. 

Normal

𝑛1  

𝜃1  

𝜃2 

𝑛2 

 

Normal

𝑛1  

𝜃1  

𝜃2 
𝑛2 

 
𝑛2 > 𝑛1 therefore, 𝜃1 > 𝜃2 𝑛1 > 𝑛2 therefore, 𝜃2 > 𝜃1 

 

The rules governing the direction of the refracted ray, (towards or away from the normal), 

shown above can be more easily seen by rewriting Snell’s law as follows. 

𝑛1

𝑛2
=

𝑠𝑖𝑛(𝜃2)

𝑠𝑖𝑛(𝜃1)
 

Since the sine function monotonically increases for 0 < 𝜃 < 90°, when 𝑛1 > 𝑛2, 𝜃2 must be 

grater than 𝜃1.  Similarly, when 𝑛2 > 𝑛1 we must have 𝜃2 > 𝜃1. 

 

Example 5:   A night watchman shines a narrow beam of light into a pool with a water depth of 

2.1 m.  The flashlight stands at 1.3 m above the water and the light beam hits the surface of the 

water at a point 2.7 m from the where he stands.  Where does the spot of light hit the bottom 

of the pool, measured from the wall beneath his foot? 

𝑛1 = 1.0 𝜃1  

𝜃2 
𝑛2 = 1.33 

1.3 m

2.1 m 2.7 m

 



Solution:  The horizontal distance the light travels is indicated by the right triangle formed from 

the point at which the beam strikes the surface of the water. 

𝜃2 

2.1 m

x  

𝑥 = 2.1 𝑡𝑎𝑛(𝜃2) 

As we know, the refracting angle, 𝜃2, is related to the angle of incidence, 𝜃1, through Snell’s 

law. 

𝑛1 𝑠𝑖𝑛(𝜃1) = 𝑛2 𝑠𝑖𝑛(𝜃2) 

𝜃2 = 𝑠𝑖𝑛−1 (
𝑛1 𝑠𝑖𝑛(𝜃1)

𝑛2
)  

 

The angle of incidence can be found using the right triangle formed similar to the triangle 

above. 

𝜃1  

2.7 m

1.3 m

 

In this case, we have 

𝜃1 = 𝑡𝑎𝑛−1 (
2.7

1.3
) ≅ 64.3° 

Using this result and the two equations from above we can solve for 𝑥 as follows. 

𝑥 = 2.1 𝑡𝑎𝑛 (𝑠𝑖𝑛−1 (
𝑛1 𝑠𝑖𝑛(𝜃1)

𝑛2
)) 

= 2.1 𝑡𝑎𝑛 (𝑠𝑖𝑛−1 (
1 𝑠𝑖𝑛(64.3°)

1.33
)) ≅ 1.9 𝑚 

 

Finally, the distance from the pool wall to the spot where the light strikes the ground, 𝐷, is 

found as follows. 

𝐷 =  2.7 + 𝑥  

≅  2.7 + 1.9 =  4.6 𝑚 

 



Total Internal Reflection: 

Recall that when light passes from a material with a higher index of refraction than the material 

for which the light enters, the light ray bends away from the normal.  An example is a light ray 

going from water to air as shown below.   
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Note from the figure, as the angle of incidence gets larger the light beam bends more towards 

the surface of the water.  Even more interesting is when the angle of incidence reaches the so 

called critical angle, 𝜃𝑐, the light beam moves along the surface of the water and an observer 

above the water will not see the light.  The reflecting angle at this point is 90°, which we can 

use to find an expression for the critical incident angle as follows. 

 

𝑛1 𝑠𝑖𝑛(𝜃1) = 𝑛2 𝑠𝑖𝑛(𝜃2) 

𝑠𝑖𝑛(𝜃𝑐) =
𝑛2

𝑛1
𝑠𝑖𝑛(90°) 

𝑠𝑖𝑛(𝜃𝑐) =
𝑛2

𝑛1
 

 

Incident angles larger than 𝜃𝑐  will reflect back into the water.  This is referred to as total 

internal reflection and is one of the main principles used to send light signals through fiber 

optic cables.  Any light that escapes the cable causes a loss in signal getting to the intended 

receiver. 

 

Wasted energy 

Wasted energy 

 



Example 6:   A beam of light is emitted in a pool of water from a depth of 82 cm.  Where must it 

strike the air-water interface, relative to the spot directly above it, in order that the light does 

not exit the water?  The index of refraction of water is 1.33. 

Solution:  As shown the light beam must strike the interface at the critical angle, 𝜃𝑐. 

𝑠𝑖𝑛(𝜃𝑐) =
𝑛2

𝑛1
 

𝜃𝑐 =  𝑠𝑖𝑛−1 (
1

1.33
) ≅ 48.8° 

90° 

𝜃𝑐  82 cm 

 

Next, we use the right angle formed to find the horizontal distance. 

𝑥 =  82 𝑡𝑎𝑛(𝜃𝑐) 

=  82 𝑡𝑎𝑛(48.8°) ≅ 93.5 𝑐𝑚 

Note incident angles larger than the critical angle will also experience total internal refection.  

Therefore, the light ray can strike the surface at distances greater than the value computed 

above also. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Final Summary for Geometric Optics – Mirrors 

Law of Reflection 

When a narrow beam of light, e.g. a light ray, strikes a flat and reflective surface the 
following applies. 
 

The angle of incidence, 𝜽𝒊, equals the angle of reflection, 𝜽𝒓 

𝜃𝑖  𝜃𝑖  𝜃𝑟  𝜃𝑟  

Normal to 
Surface 

Normal to 
Surface 

End-on View  
Plane Mirrors 

For plane mirrors the image is always virtual, upright, same height, and same distance 
behind the mirror as the object is in front of the mirror. 
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Spherically Curved Mirrors 

Spherical mirrors can be concave, where the reflecting surface is on the inside of the sphere, 
or convex, where the reflecting surface is on the outside of the sphere. 
 
Concave mirrors focus parallel lights rays to a point in front of the mirror called the focal 
point, 𝐹.   
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Convex mirrors focus parallel lights rays to a point behind the mirror, also called the focal 
point, 𝐹.   
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The distance of the point 𝐹 to the mirror is called the focal length, 𝑓, and  

𝑓 =
𝑟

2
 

Where 𝑟 is the radius of curvature of the mirror, where 𝐶 marks the center of the sphere. 

 

 

 

 

 

 

 



Mirror Equations 
1

𝑑𝑜
+

1

𝑑𝑖
=

1

𝑓
 𝑚 =

ℎ𝑖

ℎ0
= −

𝑑𝑖

𝑑0
 

𝑚: represents the lateral magnification 
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Conventions: 

• Object height, ℎ𝑜, and image height, ℎ𝑖, are positive if upright and negative if inverted. 

• Object distance, 𝑑𝑜, the image distance, 𝑑𝑖, and the focal length, 𝑓, are positive if they 
are located on the side of where the light rays originate and negative otherwise. 

• The magnification, 𝑚, is positive for an upright image and negative for an inverted image. 

• The image is considered a real image if light rays pass through it and a virtual image is the 
light rays do not pass through it. 

 

Snell’s Law of Refraction 

 

𝑛1 sin(𝜃1) = 𝑛2 sin(𝜃2) 

 

Where 𝜃1 is the angle if incidence and 𝜃2 is the angle of refraction; 𝑛1 and 𝑛2 are the 

respective indices of refraction of the materials. 
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𝑛2 > 𝑛1 therefore, 𝜃1 > 𝜃2 𝑛1 > 𝑛2 therefore, 𝜃2 > 𝜃1 
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