
 Infinite Series – Power Series  

In this section we’ll focus on a specific type of series referred to as a power series.  The 

applications of power series are practically innumerable.  For example, many functions such as 

trigonometric, exponential, and logarithm functions can be expressed as a power series.  Even 

further, power series show up in many signal analysis type applications.   

The general form of a power series is written as shown below. 

𝐹(𝑥) = ∑ 𝑎𝑛(𝑥 − 𝑐)𝑛

∞

𝑛=0

 

Where, 𝑥 is a variable and 𝑐 is a constant.  We refer to this as a power series with center 𝑐.  The 

series can also be expressed in expanded form as shown below. 

𝐹(𝑥) = 𝑎0 + 𝑎1(𝑥 − 𝑐)1 + 𝑎2(𝑥 − 𝑐)2 + 𝑎3(𝑥 − 𝑐)3+. .. 

As we have previously learned an infinite series may or may not converge.  Because the power 

series has a variable, 𝑥, it may converge for some values of 𝑥 and diverge for others.  Evaluating 

power series for convergence is generally done using the ratio test.  We illustrate with an 

example below. 

Example 1:  For what values of 𝑥 does 𝐹(𝑥) = ∑ 2𝑛𝑥𝑛∞
𝑛=0  converge?  

Using the ratio test we have: 

𝐿 =  𝑙𝑖𝑚
𝑛→∞

|
2𝑛+1𝑥𝑛+1

2𝑛𝑥𝑛
| =  𝑙𝑖𝑚

𝑛→∞
|
2𝑛2𝑥𝑛𝑥

2𝑛𝑥𝑛
| = 𝑙𝑖𝑚

𝑛→∞
|2𝑥| = 2|𝑥| 

 

 The power series converges when 𝐿 < 1, and therefore we have 

2|𝑥| < 1 → |𝑥| <
1

2
 

Note that the ratio test is inconclusive for the endpoints of the region found above.  Therefore, 

we must test these points separately as follows. 

𝑥 = −
1

2
 𝑥 =

1

2
 

∑ 2𝑛 (−
1

2
)

𝑛∞

𝑛=0

= ∑(−1)𝑛

∞

𝑛=0

 

The limit DNE. 

∑ 2𝑛 (
1

2
)

𝑛∞

𝑛=0

= ∑(1)𝑛

∞

𝑛=0

 

The series diverges. 

The result is a so-called region of convergence, ROC, shown below. 

-1/2 -1/20

ConvergeDiverge Diverge

( )

 



Interestingly enough all power series will display similar behavior as the example above.  We 

summarize the possible scenarios below. 

Radius of Convergence for Power Series 

For every power series of the form  

𝐹(𝑥) = ∑ 𝑎𝑛(𝑥 − 𝑐)𝑛

∞

𝑛=0

 

 

There are three possible cases for the radius of convergence, 𝑅, as given below. 

Case 1: 

The series converges for all values of 𝑥, i.e. 𝑅 = ∞ 

Converge

c  
Case 2: 

The series diverges for all values of 𝑥 except 𝑥 = 𝑐,  i.e. 𝑅 = 0 

c

Diverge Diverge

Converge

 
Case 3: 

The series converges for |𝑥 − 𝑐| < 𝑅, i.e. 𝑅 > 0 

c

ConvergeDiverge Diverge

c-R c+R

Possible 

Convergence

Possible 

Convergence  
 

Based on the above summary there are two steps required to find the interval over which a 

power series converges. 

1. Find the radius of convergence, 𝑅, using the ratio test. 

2. Check endpoints when 𝑅 ≠ 0 𝑜𝑟 ∞ 

Let’s practice with some examples. 

 

 

 

 



Example 2:  Find the interval over with the following power series converge. 

a.  

𝐹(𝑥) = ∑
𝑥𝑛

𝑛5

∞

𝑛=4

 

b.  

𝐹(𝑥) = ∑
𝑥𝑛

(𝑛!)5

∞

𝑛=0

 

c.  

𝐹(𝑥) = ∑
(−1)𝑛𝑥𝑛

√𝑛2 + 1

∞

𝑛=0

 

d.  

𝐹(𝑥) = ∑ 𝑛(𝑥 − 3)𝑛

∞

𝑛=1

 

e.  

𝐹(𝑥) = ∑
2𝑛

3𝑛
(𝑥 + 3)𝑛

∞

𝑛=1

 

f.  

𝐹(𝑥) = ∑ 𝑒𝑛(𝑥 − 2)𝑛

∞

𝑛=12

 

_____________________________________________________________________________________ 

Solutions: 

1.  

𝐹(𝑥) = ∑
𝑥𝑛

𝑛5

∞

𝑛=4

 

 

𝐿 =  𝑙𝑖𝑚
𝑛→∞

|
𝑥𝑛+1

(𝑛 + 1)5
∙

𝑛5

𝑥𝑛
| =  𝑙𝑖𝑚

𝑛→∞
|

𝑥𝑛𝑥𝑛5

𝑥𝑛(𝑛 + 1)5
| = |𝑥| 𝑙𝑖𝑚

𝑛→∞
|

𝑛5

(𝑛 + 1)5
| = |𝑥| 

 

The power series converges when 𝐿 < 1, and therefore we have 

|𝑥| < 1 

Next, we check the endpoints. 

𝑥 = −1 𝑥 = 1 

∑
(−1)𝑛

𝑛5

∞

𝑛=4

 

Converges based on the alternating series test. 

∑
1𝑛

𝑛5

∞

𝑛=4

= ∑
1

𝑛5

∞

𝑛=4

 

Which is a convergent p-series. 

 

The region of convergence can be defined using interval notation as follows: 

𝑥 = [−1, 1] 

_____________________________________________________________________________________ 

 

 

 

 

 



2.  

𝐹(𝑥) = ∑
𝑥𝑛

(𝑛!)5

∞

𝑛=0

 

 

𝐿 =  𝑙𝑖𝑚
𝑛→∞

|
𝑥𝑛+1

((𝑛 + 1)!)
5 ∙

(𝑛!)5

𝑥𝑛
| =  𝑙𝑖𝑚

𝑛→∞
|𝑥 (

𝑛!

(𝑛 + 1)!
)

5

| = |𝑥| 𝑙𝑖𝑚
𝑛→∞

|
1

(𝑛 + 1)5
| = |𝑥| ∙ 0 = 0 

 

Therefore, the power series converges for all values of 𝑥. 

𝑥 = (−∞, ∞) 

_____________________________________________________________________________________ 

3.  

𝐹(𝑥) = ∑
(−1)𝑛𝑥𝑛

√𝑛2 + 1

∞

𝑛=0

 

 

𝐿 =  𝑙𝑖𝑚
𝑛→∞

|
𝑥𝑛+1

√(𝑛 + 1)2 + 1
∙

√𝑛2 + 1

𝑥𝑛
| =  𝑙𝑖𝑚

𝑛→∞
|𝑥 (√

𝑛2 + 1

𝑛2 + 2𝑛 + 2
)| = |𝑥|√ 𝑙𝑖𝑚

𝑛→∞
|

𝑛2 + 1

𝑛2 + 2𝑛 + 2
| 

= |𝑥| ∙ √1 

= |𝑥| 

 

The power series converges when 𝐿 < 1, and therefore we have 

|𝑥| < 1 

Next, we check the endpoints. 

𝑥 = −1 𝑥 = 1 

∑
(−1)𝑛(−1)𝑛

√𝑛2 + 1

∞

𝑛=0

= ∑
1

√𝑛2 + 1

∞

𝑛=0

 

 

You can find that this series diverges by 

using the limit comparison test with the 

harmonic series ∑
1

𝑛
∞
𝑛=0 . 

∑
(−1)𝑛(1)𝑛

√𝑛2 + 1

∞

𝑛=0

= ∑
(−1)𝑛

√𝑛2 + 1

∞

𝑛=0

 

Converges based on the alternating series 

test. 

 

The region of convergence can be defined using interval notation as follows: 

𝑥 = (−1, 1] 



4.  

𝐹(𝑥) = ∑ 𝑛(𝑥 − 3)𝑛

∞

𝑛=1

 

 

𝐿 =  𝑙𝑖𝑚
𝑛→∞

|
(𝑛 + 1)(𝑥 − 3)𝑛(𝑥 − 3)

𝑛(𝑥 − 3)𝑛
| =  |𝑥 − 3| 𝑙𝑖𝑚

𝑛→∞
|
(𝑛 + 1)

𝑛
| |𝑥 − 3| ∙ 1 

 

Therefore, we have 

|𝑥 − 3| < 1 → 𝑥 = (2, 4)  

Next, we check the endpoints. 

𝑥 = 2 𝑥 = 4 

∑ 𝑛(−1)𝑛

∞

𝑛=1

 

Which diverges. 

∑ 𝑛(1)𝑛

∞

𝑛=1

= ∑ 𝑛

∞

𝑛=𝑛

 

Which diverges. 

 

The region of convergence can be defined using interval notation as follows: 

𝑥 = (2, 4) 

_____________________________________________________________________________________ 

5.  

𝐹(𝑥) = ∑
2𝑛

3𝑛
(𝑥 + 3)𝑛

∞

𝑛=1

 

 

𝐿 =  𝑙𝑖𝑚
𝑛→∞

|
2𝑛+1(𝑥 + 3)𝑛+1

3(𝑛 + 1)
∙

3𝑛

2𝑛(𝑥 + 3)𝑛
| =  𝑙𝑖𝑚

𝑛→∞
|
2(𝑥 + 3)3𝑛

3𝑛 + 3
| 

= 2|(𝑥 + 3)| 𝑙𝑖𝑚
𝑛→∞

|
3𝑛

3𝑛 + 3
| = 2|(𝑥 + 3)| ∙ 1 

 

Therefore, we have 

|(𝑥 + 3)| <
1

2
  

 

For which we can find the interval as shown below. 



(𝑥 + 3) <
1

2
 

𝑥 <
1

2
− 3 

𝑥 < −2.5 

and 

(𝑥 + 3) > −
1

2
 

𝑥 > −
1

2
− 3 

𝑥 > −3.5 
−3.5 < 𝑥 < −2.5 

Finally, we check the endpoints. 

𝑥 = −3.5 𝑥 = −2.5 

∑
2𝑛

3𝑛
(−

1

2
)

𝑛∞

𝑛=1

= ∑
(−1)𝑛

3𝑛

∞

𝑛=1

=
1

3
∑

(−1)𝑛

𝑛

∞

𝑛=1

 

 

Which converges based on the alternating 

series test. 

∑
2𝑛

3𝑛
(

1

2
)

𝑛∞

𝑛=1

= ∑
1𝑛

3𝑛

∞

𝑛=1

=
1

3
∑

1

𝑛

∞

𝑛=1

 

 

Which is a divergent harmonic series. 

 

The region of convergence can be defined using interval notation as follows: 

𝑥 = [−3.5, −2.5) 

_____________________________________________________________________________________ 

6.  

𝐹(𝑥) = ∑ 𝑒𝑛(𝑥 − 2)𝑛

∞

𝑛=12

 

 

𝐿 =  𝑙𝑖𝑚
𝑛→∞

|
𝑒𝑛+1(𝑥 − 2)𝑛+1

𝑒𝑛(𝑥 − 2)𝑛
| =  𝑙𝑖𝑚

𝑛→∞
|𝑒1(𝑥 − 2)| = 𝑒1|(𝑥 − 2)| 

 

Therefore, we have 

|(𝑥 − 2)| <
1

𝑒1  → 𝑥 = (2 −
1

𝑒1 , 2 +
1

𝑒1)  

Finally, we check the endpoints. 

𝑥 = 2 −
1

𝑒1
 𝑥 = 2 +

1

𝑒1
 

∑ 𝑒𝑛 (−
1

𝑒1
)

𝑛∞

𝑛=12

= ∑ (−1)𝑛

∞

𝑛=12

 

Which diverges. 

∑ 𝑒𝑛 (
1

𝑒1
)

𝑛∞

𝑛=12

= ∑ (1)𝑛

∞

𝑛=12

 

Which diverges. 

The region of convergence can be defined using interval notation as follows: 

𝑥 = (2 −
1

𝑒1
, 2 +

1

𝑒1
) 



Important to the practical applications of power series is the ability to represents functions with 

power series.  One function in particular that we are already aware of is related to the 

geometric series.  As shown below a geometric series is a form of a power series. 

Geometric Series as a Power Series 

𝐹(𝑥) = ∑ 𝑎𝑥𝑛

∞

𝑛=0

=
𝑎

1 − 𝑥
 

For |𝑥| < 1 

 

As shown above, the power series, 𝐹(𝑥) = ∑ 𝑎𝑥𝑛∞
𝑛=0 , can be used to represent the function, 

𝐹(𝑥) =  
𝑎

1−𝑥
, for −1 < 𝑥 < 1.  

Of course, this is not the only function that can be represented with a power series.  Below we 

discuss three tools that can be used to derive additional power series representations for 

various functions.  They are: 1. Substitution, 2. Differentiation, and 3. Integration. 

Substitution 

Substitution is a powerful means to find power series representations of functions by using 

previously known functions.  Let’s see how this works with the following example. 

Example 3:  Find the power series representation of the following function. 

𝐹(𝑥) =
1

1 − 3𝑥
 

We start by rewriting the function using the substitution, 𝑧 = 3𝑥. 

𝐹(𝑧) =
1

1 − 𝑧
 

Which, as shown below, is a function for which we already know the power series 

representation   

𝐹(𝑧) = ∑ 𝑧𝑛

∞

𝑛=0

 

For |𝑧| < 1. 

 

Finally, we resubstitute 𝑧 = 3𝑥 into the known power series as follows:  

𝐹(𝑥) = 𝐹(𝑧)|𝑧=3𝑥 = ∑(3𝑥)𝑛

∞

𝑛=0

= ∑ 3𝑛𝑥𝑛

∞

𝑛=0

 

For |3𝑥| < 1 → |𝑥| <
1

3
  



Let’s practice this technique with additional functions below. 

Example 4:  Find the power series representation of the following functions. 

a.  

𝐹(𝑥) =
1

4 + 3𝑥
 

b.  

𝐹(𝑥) =
1

1 + 𝑥2
 

c.  

𝐹(𝑥) =
1

16 + 2𝑥3
 

_____________________________________________________________________________________ 

 

Solutions: 

a.  

𝐹(𝑥) =
1

4 + 3𝑥
 

We start by rewriting as follows: 

 

𝐹(𝑥) =
1

4 + 3𝑥
=

1 4⁄

1 + 3 4⁄ 𝑥
=

1 4⁄

1 − (− 3 4⁄ 𝑥)
  

Therefore,  

𝐹(𝑧) =
1

1 − 𝑧
= ∑ 1 4⁄ (𝑧)𝑛

∞

𝑛=0

 

Where, 𝑧 = − 3 4⁄ 𝑥 

Finally, we have:  

𝐹(𝑥) = 𝐹(𝑧)|𝑧=−3 4⁄ 𝑥 = ∑ 1 4⁄ (− 3 4⁄ 𝑥)𝑛

∞

𝑛=0

 

𝐹(𝑥) = ∑ 1 4⁄ (−1)𝑛 (
3

4
)

𝑛

𝑥𝑛

∞

𝑛=0

 

For |− 3 4⁄ 𝑥| < 1 → |𝑥| <
4

3
  

_____________________________________________________________________________________ 

 

 

 

 

 



b.  

𝐹(𝑥) =
1

1 + 𝑥2
 

 

𝐹(𝑥) =
1

1 + 𝑥2
=

1

1 − (−𝑥2)
  

 

Therefore,  

𝐹(𝑥) = 𝐹(𝑧)|𝑧=−𝑥2 = ∑(−𝑥2)𝑛

∞

𝑛=0

= ∑(−1)𝑛𝑥2𝑛

∞

𝑛=0

 

 

For |−𝑥2| < 1 → |𝑥| < 1  

_____________________________________________________________________________________ 

 

 

c.  

𝐹(𝑥) =
1

16 + 2𝑥3
 

 

𝐹(𝑥) =
1

16 + 2𝑥3
=

1 16⁄

1 − (−
1
8 𝑥3)

  

Therefore,  

𝐹(𝑥) = 𝐹(𝑧)|
𝑧=−

1
8

𝑥3 = ∑ 1 16⁄ (−
1

8
𝑥3)

𝑛∞

𝑛=0

= ∑
(−1)𝑛𝑥3𝑛

8𝑛

∞

𝑛=0

 

 

For |−
1

8
𝑥3| < 1 → |𝑥| < 8  

_____________________________________________________________________________________ 

 

 

 

 



Power Series Differentiation and Integration  

Since differentiation and integration are linear operators, we can use them to operate on a 

power series term by term.  Doing this will also allow us to develop power series 

representations of additional functions.  Before we do some examples, we state the theorem 

below. 

Power Series Differentiation and Integration 

Assume that the power series  

𝐹(𝑥) = ∑ 𝑎𝑛(𝑥 − 𝑐)𝑛

∞

𝑛=0

 

Has a radius of convergence, 𝑅 > 0.   
 
Then 𝐹(𝑥) can be differentiated and integrated for 𝑐 − 𝑅 < 𝑥 < 𝑐 + 𝑅.  The differentiation 
and integration is done term by term and can be expressed as follows: 
 

Differentiation 

𝑑

𝑑𝑥
(𝐹(𝑥)) =

𝑑

𝑑𝑥
(∑ 𝑎𝑛(𝑥 − 𝑐)𝑛

∞

𝑛=0

) = ∑ 𝑎𝑛

𝑑

𝑑𝑥
(𝑥 − 𝑐)𝑛

∞

𝑛=0

 

𝒅

𝒅𝒙
(𝑭(𝒙)) = ∑ 𝒂𝒏𝒏(𝒙 − 𝒄)𝒏−𝟏

∞

𝒏=𝟏

 

Integration 

∫ 𝐹(𝑥)𝑑𝑥 = ∫ (∑ 𝑎𝑛(𝑥 − 𝑐)𝑛

∞

𝑛=0

) 𝑑𝑥 = ∑ (∫ 𝑎𝑛(𝑥 − 𝑐)𝑛) 𝑑𝑥

∞

𝑛=0

 

∫ 𝑭(𝒙)𝒅𝒙 = ∑
𝒂𝒏

𝒏 + 𝟏
(𝒙 − 𝒄)𝒏+𝟏

∞

𝒏=𝟎

+ 𝑪 

The resulting series have the same radius of convergence, 𝑅. 

 

Let’s demonstrate the above theorem with some examples. 

 

Example 5:  Use differentiation to find the power series representation of the following 

function. 

𝑓(𝑥) =
1

(1 − 𝑥)2
  , −1 < 𝑥 < 1 

 

 



We start by noticing the following: 

𝑑

𝑑𝑥
(

1

1 − 𝑥
)  =  

1

(1 − 𝑥)2
 

Furthermore, since the left-hand side function is the geometric power series,  
1

1−𝑥
= ∑ 𝑥𝑛∞

𝑛=0 , 

we can write the following: 

𝑑

𝑑𝑥
(∑ 𝑥𝑛

∞

𝑛=0

)  =  
1

(1 − 𝑥)2
 

Finally, differentiating the power series we have 

𝑑

𝑑𝑥
(∑ 𝑥𝑛

∞

𝑛=0

)  =  
1

(1 − 𝑥)2
 

∑
𝑑

𝑑𝑥
(𝑥𝑛)

∞

𝑛=0

 =  
1

(1 − 𝑥)2
 

∑ 𝑛𝑥𝑛−1

∞

𝑛=1

 =  
1

(1 − 𝑥)2
  

Therefore,  

1

(1 − 𝑥)2
= ∑ 𝑛𝑥𝑛−1

∞

𝑛=1

, −1 < 𝑥 < 1   

 

 

Example 6:  Use integration to find the power series representation of the following function. 

𝑓(𝑥) = 𝑙𝑛(1 + 𝑥) , −1 < 𝑥 < 1  

 

We start by noticing the following: 

∫ (
1

1 + 𝑥
) 𝑑𝑥 = 𝑙𝑛(1 + 𝑥) 

 

We can find the power series of the integrand on the left-hand side using substitution with the 

geometric power series as follows: 

1

1 + 𝑥
=

1

1 − (−𝑥)
= ∑(−𝑥)𝑛

∞

𝑛=0

= ∑(−1)𝑛𝑥𝑛

∞

𝑛=0

 



With this we can write the following: 

∫ (∑(−1)𝑛𝑥𝑛

∞

𝑛=0

) 𝑑𝑥 = 𝑙𝑛(1 + 𝑥) 

∑(−1)𝑛 ∫ 𝑥𝑛 𝑑𝑥

∞

𝑛=0

= 𝑙𝑛(1 + 𝑥) 

∑
(−1)𝑛

𝑛 + 1

∞

𝑛=0

𝑥𝑛+1 + 𝐶 = 𝑙𝑛(1 + 𝑥) 

To solve for 𝐶 we let 𝑥 = 0 and find 𝐶 = 0. 

Which is more commonly written as,  

𝑙𝑛(1 + 𝑥) = ∑
(−1)𝑛−1

𝑛

∞

𝑛=1

𝑥𝑛, −1 < 𝑥 < 1   

 

Example 7:  Find the power series representation of the following functions. 

a.  
𝑥2

(1 − 2𝑥)2
 

b.  
𝑡𝑎𝑛−1(2𝑥) 

Solution: 

a. We start by rewriting the function as, 𝑥2 ∙
1

(1−2𝑥)2, and noticing that 

𝑑

𝑑𝑥
(

1

(1 − 2𝑥)
) =

2

(1 − 2𝑥)2
 

(
1

2
)

𝑑

𝑑𝑥
(

1

(1 − 2𝑥)
) =

1

(1 − 2𝑥)2
  

Next, the power series of the function on the left-had side can be found using substitution with 

the geometric power series as follows: 

 

1

(1 − (2𝑥))
= ∑(2𝑥)𝑛

∞

𝑛=0

= ∑ 2𝑛

∞

𝑛=0

𝑥𝑛 

 

 

 



Using this result, we have 

1

(1 − 2𝑥)2
=

1

2

𝑑

𝑑𝑥
(

1

(1 − 2𝑥)
) 

 =
1

2

𝑑

𝑑𝑥
(∑ 2𝑛

∞

𝑛=0

𝑥𝑛) 

=
1

2
(∑ 2𝑛

∞

𝑛=1

𝑛𝑥𝑛−1) 

= ∑ 2𝑛−1

∞

𝑛=1

𝑛𝑥𝑛−1 

Finally, we can multiply both sides by 𝑥2. 

𝑥2

(1 − 2𝑥)2
= 𝑥2 ∑ 2𝑛−1

∞

𝑛=1

𝑛𝑥𝑛−1 

= ∑ 2𝑛−1

∞

𝑛=1

𝑛𝑥𝑛−1𝑥2 

= ∑ 2𝑛−1

∞

𝑛=1

𝑛𝑥𝑛+1 

𝑥2

(1 − 2𝑥)2
= ∑ 2𝑛

∞

𝑛=0

(𝑛 + 1)𝑥𝑛+2 

Where, in the last step we let the series start at 𝑛 = 0 and adjusted the terms inside the 

summation appropriately. 

b. In this case we start by noticing that 

𝑑

𝑑𝑥
(𝑡𝑎𝑛−1(2𝑥)) =

2

1 + 4𝑥2
 

Or  

𝑡𝑎𝑛−1(2𝑥) + 𝐶 = ∫
2

1 + 4𝑥2
𝑑𝑥 

Next, the power series of the function of the integrand can be found using substitution with the 

geometric power series as follows: 

2

1 − (−4𝑥2)
= ∑ 2(−4𝑥2)𝑛

∞

𝑛=0

= ∑(−1)𝑛2 ∙ 4𝑛 ∙ 𝑥2𝑛

∞

𝑛=0

= ∑(−1)𝑛22𝑛+1𝑥2𝑛

∞

𝑛=0

 



Using this result, we have 

𝑡𝑎𝑛−1(2𝑥) + 𝐶 = ∫ (∑(−1)𝑛22𝑛+1𝑥2𝑛

∞

𝑛=0

) 𝑑𝑥 

= ∑
(−1)𝑛22𝑛+1

2𝑛 + 1
𝑥2𝑛+1

∞

𝑛=0

 

 

If we let, 𝑥 = 0 we find that 𝐶 = 0.  Therefore, we can finally write the series as 

𝑡𝑎𝑛−1(2𝑥) = ∑
(−1)𝑛22𝑛+1

2𝑛 + 1
𝑥2𝑛+1

∞

𝑛=0

 

 

 

Example 8:  Use what we learned about power series to approximate the following integral. 

∫
1

1 + 𝑥4
𝑑𝑥

1/2

0

 

Solution:  We will start by finding the power series representation of the integrand. 

 

1

1 − (−𝑥4)
= ∑(−𝑥4)𝑛

∞

𝑛=0

= ∑(−1)𝑛𝑥4𝑛

∞

𝑛=0

 

With this, along with the fact that the interval of integration is within the region of 

convergence, we can integrate as follows: 

∫ (∑(−1)𝑛𝑥4𝑛

∞

𝑛=0

) 𝑑𝑥
1/2

0

= (∑
(−1)𝑛𝑥4𝑛+1

4𝑛 + 1

∞

𝑛=0

)|

0

1/2

 

 

We can estimate the integral using the first 3 terms of the series. 

=
(−1)0 (

1
2

)
4∙0+1

4 ∙ 0 + 1
+

(−1)1 (
1
2

)
4∙1+1

4 ∙ 1 + 1
+

(−1)2 (
1
2

)
4∙2+1

4 ∙ 2 + 1
 

=
1

2
−

(
1
2)

5

5
+

(
1
2)

9

9
  

=
1

2
−

1

5 ∙ 25
+

1

9 ∙ 29
 ≅ 0.49397 



Final Summary for Infinite Series – Power Series  

General Form of a Power Series 

𝐹(𝑥) = ∑ 𝑎𝑛(𝑥 − 𝑐)𝑛

∞

𝑛=0

 

Where, 𝑥 is a variable and 𝑐 is a constant.  We refer to this as a power series with center 𝑐.   
 
The series can also be expressed in expanded form as shown below. 
 

𝐹(𝑥) = 𝑎0 + 𝑎1(𝑥 − 𝑐)1 + 𝑎2(𝑥 − 𝑐)2 + 𝑎3(𝑥 − 𝑐)3+. .. 
 

Radius of Convergence for Power Series 

Case 1: 

The series converges for all values of 𝑥, i.e. 𝑅 = ∞ 

Converge

c  

Case 2: 

The series diverges for all values of 𝑥 except 𝑥 = 𝑐,  i.e. 𝑅 = 0 

c

Diverge Diverge

Converge

 

Case 3: 

The series converges for |𝑥 − 𝑐| < 𝑅, i.e. 𝑅 > 0 

c

ConvergeDiverge Diverge

c-R c+R

Possible 

Convergence

Possible 

Convergence  

Geometric Series as a Power Series 

𝐹(𝑥) = ∑ 𝑎𝑥𝑛

∞

𝑛=0

=
𝑎

1 − 𝑥
 

For |𝑥| < 1 

 
Note: Power series for other functions can be found with substitution using this series as a abase. 

 

 

 



Power Series Differentiation and Integration 

Assume that the power series  

𝐹(𝑥) = ∑ 𝑎𝑛(𝑥 − 𝑐)𝑛

∞

𝑛=0

 

Has a radius of convergence, 𝑅 > 0.   
 
Then 𝐹(𝑥) can be differentiated and integrated for 𝑐 − 𝑅 < 𝑥 < 𝑐 + 𝑅.  The differentiation 
and integration is done term by term and can be expressed as follows: 
 

Differentiation 

𝑑

𝑑𝑥
(𝐹(𝑥)) =

𝑑

𝑑𝑥
(∑ 𝑎𝑛(𝑥 − 𝑐)𝑛

∞

𝑛=0

) = ∑ 𝑎𝑛

𝑑

𝑑𝑥
(𝑥 − 𝑐)𝑛

∞

𝑛=0

 

𝒅

𝒅𝒙
(𝑭(𝒙)) = ∑ 𝒂𝒏𝒏(𝒙 − 𝒄)𝒏−𝟏

∞

𝒏=𝟏

 

Integration 

∫ 𝐹(𝑥)𝑑𝑥 = ∫ (∑ 𝑎𝑛(𝑥 − 𝑐)𝑛

∞

𝑛=0

) 𝑑𝑥 = ∑ (∫ 𝑎𝑛(𝑥 − 𝑐)𝑛) 𝑑𝑥

∞

𝑛=0

 

∫ 𝑭(𝒙)𝒅𝒙 = ∑
𝒂𝒏

𝒏 + 𝟏
(𝒙 − 𝒄)𝒏+𝟏

∞

𝒏=𝟎

+ 𝑪 

The resulting series have the same radius of convergence, 𝑅. 
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